Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Science ; 377(6611): 1144-1149, 2022 09 09.
Article in English | MEDLINE | ID: covidwho-2193408

ABSTRACT

There has been substantial research on adult COVID-19 and how to treat it. But how do severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections afflict children? The COVID-19 pandemic has yielded many surprises, not least that children generally develop less severe disease than older adults, which is unusual for a respiratory disease. However, some children can develop serious complications from COVID-19, such as multisystem inflammatory syndrome in children (MIS-C) and Long Covid, even after mild or asymptomatic COVID-19. Why this occurs in some and not others is an important question. Moreover, when children do contract COVID-19, understanding their role in transmission, especially in schools and at home, is crucial to ensuring effective mitigation measures. Therefore, in addition to nonpharmaceutical interventions, such as improved ventilation, there is a strong case to vaccinate children so as to reduce possible long-term effects from infection and to decrease transmission. But questions remain about whether vaccination might skew immune responses to variants in the long term. As the experts discuss below, more is being learned about these important issues, but much more research is needed to understand the long-term effects of COVID-19 in children.


Subject(s)
COVID-19 , Pandemics , Systemic Inflammatory Response Syndrome , Aged , COVID-19/complications , COVID-19/therapy , Child , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/virology , Post-Acute COVID-19 Syndrome
2.
Nat Commun ; 13(1): 5547, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2036824

ABSTRACT

Public health indicators typically used for COVID-19 surveillance can be biased or lag changing community transmission patterns. In this study, we investigate whether sentinel surveillance of recently symptomatic individuals receiving outpatient diagnostic testing for SARS-CoV-2 could accurately assess the instantaneous reproductive number R(t) and provide early warning of changes in transmission. We use data from community-based diagnostic testing sites in the United States city of Chicago. Patients tested at community-based diagnostic testing sites between September 2020 and June 2021, and reporting symptom onset within four days preceding their test, formed the sentinel population. R(t) calculated from sentinel cases agreed well with R(t) from other indicators. Retrospectively, trends in sentinel cases did not precede trends in COVID-19 hospital admissions by any identifiable lead time. In deployment, sentinel surveillance held an operational recency advantage of nine days over hospital admissions. The promising performance of opportunistic sentinel surveillance suggests that deliberately designed outpatient sentinel surveillance would provide robust early warning of increasing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Chicago/epidemiology , Humans , Outpatients , Retrospective Studies , Sentinel Surveillance , United States/epidemiology
3.
mSphere ; 7(3): e0017922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854243

ABSTRACT

To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Reinfection , Seroepidemiologic Studies
4.
Public Health Rep ; 137(4): 672-678, 2022.
Article in English | MEDLINE | ID: covidwho-1819998

ABSTRACT

OBJECTIVES: The Illinois Department of Public Health (IDPH) assessed whether increases in the SARS-CoV-2 test positivity rate among pregnant people at labor and delivery (L&D) could signal increases in SARS-CoV-2 prevalence in the general Illinois population earlier than current state metrics. MATERIALS AND METHODS: Twenty-six birthing hospitals universally testing for SARS-CoV-2 at L&D voluntarily submitted data from June 21, 2020 through January 23, 2021, to IDPH. Hospitals reported the daily number of people who delivered, SARS-CoV-2 tests, and test results as well as symptom status. We compared the test positivity rate at L&D with the test positivity rate of the general population and the number of hospital admissions for COVID-19-like illness by quantifying correlations in trends and identifying a lead time. RESULTS: Of 26 633 reported pregnant people who delivered, 96.8% (n = 25 772) were tested for SARS-CoV-2. The overall test positivity rate was 2.4% (n = 615); 77.7% (n = 478) were asymptomatic. In Chicago, the only region with a sufficient sample size for analysis, the test positivity rate at L&D (peak of 5% on December 7, 2020) was lower and more stable than the test positivity rate of the general population (peak of 14% on November 13, 2020) and lagged hospital admissions for COVID-19-like illness (peak of 118 on November 15, 2020) and the test positivity rate of the general population by about 10 days (Pearson correlation = 0.73 and 0.75, respectively). PRACTICE IMPLICATIONS: Trends in the test positivity rate at L&D did not provide an earlier signal of increases in Illinois's SARS-CoV-2 prevalence than current state metrics did. Nonetheless, the role of universal testing protocols in identifying asymptomatic infection is important for clinical decision making and patient education about infection prevention and control.


Subject(s)
COVID-19 , Asymptomatic Infections , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Female , Hospitalization , Humans , Pregnancy , SARS-CoV-2
5.
Nat Commun ; 13(1): 1155, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730286

ABSTRACT

Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text]) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models applied to case counts and typically suffer lags of more than a week because of the latent period and reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis of the distribution of viral loads among confirmed cases can provide insights into epidemic trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in Hong Kong, identifying a strong correlation between temporal changes in the distribution of viral loads (measured by RT-qPCR cycle threshold values) and estimates of [Formula: see text] based on case counts. We demonstrate that cycle threshold values could be used to improve real-time [Formula: see text] estimation, enabling more timely tracking of epidemic dynamics.


Subject(s)
COVID-19/transmission , Epidemiological Models , SARS-CoV-2 , Viral Load , Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Computer Simulation , Computer Systems , Epidemics , Hong Kong/epidemiology , Humans , Models, Statistical , Pandemics , Viral Load/statistics & numerical data
6.
Nat Med ; 28(5): 934-938, 2022 05.
Article in English | MEDLINE | ID: covidwho-1713204

ABSTRACT

Given global Coronavirus Disease 2019 (COVID-19) vaccine shortages and inequity of vaccine distributions, fractionation of vaccine doses might be an effective strategy for reducing public health and economic burden, notwithstanding the emergence of new variants of concern. In this study, we developed a multi-scale model incorporating population-level transmission and individual-level vaccination to estimate the costs of hospitalization and vaccination and the economic benefits of reducing COVID-19 deaths due to dose-fractionation strategies in India. We used large-scale survey data of the willingness to pay together with data of vaccine and hospital admission costs to build the model. We found that fractional doses of vaccines could be an economically viable vaccination strategy compared to alternatives of either full-dose vaccination or no vaccination. Dose-sparing strategies could save a large number of lives, even with the emergence of new variants with higher transmissibility.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cost-Benefit Analysis , Humans , SARS-CoV-2 , Vaccination
7.
Clin Infect Dis ; 74(9): 1534-1542, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1707738

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing is critical for monitoring case counts, early detection and containment of infection, clinical management, and surveillance of variants. However, community-based data on the access, uptake, and barriers to testing have been lacking. METHODS: We conducted serial cross-sectional online surveys covering demographics, coronavirus disease 2019 symptoms, and experiences around SARS-CoV-2 diagnostic testing to characterize the SARS-CoV-2 testing cascade and associated barriers across 10 US states (California, Florida, Illinois, Maryland, Massachusetts, Nebraska, North Dakota, South Dakota, Texas, and Wisconsin), from July 2020 to February 2021. RESULTS: In February 2021, across 10 US states, 895 respondents (11%) reported wanting a diagnostic test in the prior 2 weeks, 63% of whom were tested, with limited variability across states. Almost all (97%) who were tested received their results; 56% received their results within 2 days. In Maryland, Florida, and Illinois, where serial data were available at 4 time points, 56% were tested the same day they wanted or needed a test in February 2021, compared with 28% in July 2020, and 45% received results the same day, compared with 17% in July 2020. Wanting a test was significantly more common among younger, nonwhite respondents and participants with a history of symptoms or exposure. Logistical challenges, including not knowing where to go, were the most frequently cited barriers. CONCLUSIONS: There were significant improvements in access and turnaround times across US states, yet barriers to testing remained consistent across states, underscoring the importance of a continued focus on testing, even amidst mass vaccination campaigns.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cross-Sectional Studies , Humans , Illinois , United States/epidemiology
8.
Cell ; 184(26): 6222-6223, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1706184

ABSTRACT

In this issue of Cell, Bushman et al. show how more transmissible variants, even if they do not escape immunity, can be strongly selected during the early pandemic. This explains the dynamics of past SARS-CoV-2 variants, but as immunity increases, it is difficult to predict what will emerge next.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2
9.
Science ; 371(6532): 916-921, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1532943

ABSTRACT

Limited initial supply of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine raises the question of how to prioritize available doses. We used a mathematical model to compare five age-stratified prioritization strategies. A highly effective transmission-blocking vaccine prioritized to adults ages 20 to 49 years minimized cumulative incidence, but mortality and years of life lost were minimized in most scenarios when the vaccine was prioritized to adults greater than 60 years old. Use of individual-level serological tests to redirect doses to seronegative individuals improved the marginal impact of each dose while potentially reducing existing inequities in COVID-19 impact. Although maximum impact prioritization strategies were broadly consistent across countries, transmission rates, vaccination rollout speeds, and estimates of naturally acquired immunity, this framework can be used to compare impacts of prioritization strategies across contexts.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Health Priorities , Mass Vaccination , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/mortality , COVID-19/transmission , COVID-19 Vaccines/immunology , Child , Humans , Immunogenicity, Vaccine , Middle Aged , Models, Theoretical , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
11.
JMIR Res Protoc ; 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1295585

ABSTRACT

BACKGROUND: The Arizona Healthcare, Emergency Response, and Other Essential workers Study (AZ HEROES) aims to examine the epidemiology of SARS-CoV-2 infection and COVID-19 illness among adults with high occupational exposure risk. OBJECTIVE: Study objectives include estimating incidence of SARS-CoV-2 infection in essential workers by symptom presentation and demographic factors, determining independent effects of occupational and community exposures on incidence of SARS-CoV-2 infection, establishing molecular and immunologic characteristics of SARS-CoV-2 infection in essential workers, describing the duration and patterns of rRT-PCR-positivity, and examining post-vaccine immunologic response. METHODS: Eligible participants include Arizona residents aged 18-85 years who work at least 20 hours per week in an occupation involving regular direct contact (within three feet) with others. Recruitment goals are stratified by demographic characteristics (50% aged 40 or older, 50% women, and 50% Hispanic or American Indian), by occupation (40% healthcare personnel, 30% first responders, and 30% other essential workers), and by prior SARS-CoV-2 infection (with up to 50% seropositive at baseline). Information on sociodemographics, health and medical history, vaccination status, exposures to individuals with suspected or confirmed SARS-CoV-2 infection, use of personal protective equipment, and perceived risks are collected at enrollment and updated through quarterly surveys. Every week, participants complete active surveillance for COVID-19-like illness (CLI) and self-collect nasal swabs. Additional self-collected nasal swab and saliva specimens are collected in the event of CLI onset. Respiratory specimens are sent to Marshfield Laboratories and tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (rRT-PCR) assay. CLI symptoms and impact on work and productivity are followed through illness resolution. Serum specimens are collected every 3 months and additional sera are collected following incident rRT-PCR positivity and after each COVID-19 vaccine dose. Incidence of SARS-CoV-2 infections will be calculated by person-weeks at risk and compared by occupation and demographic characteristics and by seropositivity status and infection and vaccination history. RESULTS: The AZ HEROES study was funded by the Centers for Disease Control and Prevention. Enrollment began July 27, 2020 and as of May 1, 2021 a total of 3,165 participants have been enrolled in the study. CONCLUSIONS: AZ HEROES is unique in aiming to recruit a diverse sample of essential workers and prospectively following strata of SARS-CoV-2 seronegative and seropositive adults. Survey results combined with active surveillance data on exposure, CLI, weekly molecular diagnostic testing, and periodic serology will be used to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infection, assess the intensity and durability of immune responses to natural infection and COVID-19 vaccination, and contribute to the evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT: DERR1-10.2196/28925.

12.
BMC Public Health ; 21(1): 1105, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1264175

ABSTRACT

BACKGROUND: Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. METHODS: We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. RESULTS: By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50-80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. CONCLUSIONS: Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Illinois/epidemiology , Pandemics , United States/epidemiology
14.
Nat Rev Immunol ; 21(5): 330-335, 2021 05.
Article in English | MEDLINE | ID: covidwho-1164868

ABSTRACT

When vaccines are in limited supply, expanding the number of people who receive some vaccine, such as by halving doses or increasing the interval between doses, can reduce disease and mortality compared with concentrating available vaccine doses in a subset of the population. A corollary of such dose-sparing strategies is that the vaccinated individuals may have less protective immunity. Concerns have been raised that expanding the fraction of the population with partial immunity to SARS-CoV-2 could increase selection for vaccine-escape variants, ultimately undermining vaccine effectiveness. We argue that, although this is possible, preliminary evidence instead suggests such strategies should slow the rate of viral escape from vaccine or naturally induced immunity. As long as vaccination provides some protection against escape variants, the corresponding reduction in prevalence and incidence should reduce the rate at which new variants are generated and the speed of adaptation. Because there is little evidence of efficient immune selection of SARS-CoV-2 during typical infections, these population-level effects are likely to dominate vaccine-induced evolution.


Subject(s)
COVID-19/prevention & control , Off-Label Use , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/methods , Vaccines/administration & dosage , Biological Evolution , COVID-19/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Vaccination/psychology
15.
PLoS Comput Biol ; 16(12): e1008409, 2020 12.
Article in English | MEDLINE | ID: covidwho-966830

ABSTRACT

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Subject(s)
Basic Reproduction Number , COVID-19 , COVID-19/epidemiology , COVID-19/transmission , Computational Biology , Humans , Models, Statistical , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL